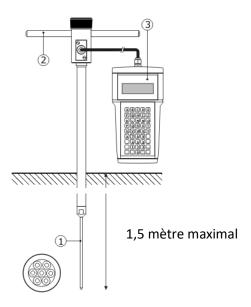


PRINCIPE TECHNIQUE CONDUCTIVITÉ THERMIQUE

Synthèse méthode	
Principe technique	Mesure de la conductivité thermique des sols
Objectifs	Modélisation des échanges de chaleur
Limitation	Sols non meubles

Principe théorique

La sonde est composée d'un corps chauffant et d'un capteur de température. L'élévation de température est telle que :

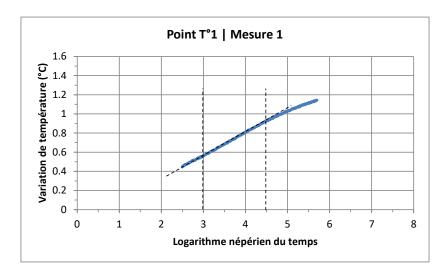

$$\Delta T = \frac{Q}{4 \times \pi \times \lambda} \times (\ln(t) + B)$$

Où:

- ΔT est en Kelvin ;
- Q est en Watt par mètre ;
- λ est en Watt par milliKelvin et est calculé en mesurant la puissance de chauffage et en traçant la température en fonction du temps ;
- t est le temps en seconde
- \triangleright B est une constante;

Réalisation sur site

La mesure est effectuée à l'aide d'une sonde qui contient le dispositif de mesurage et qui peut être foncée dans les sols meubles jusqu'à une profondeur de 1,5 m environ. On peut également, lorsque l'on veut atteindre des profondeurs plus importantes, faire un avant trou au fond duquel on réalise les mesures. La mesure est rapide (quelques minutes).


Conductivité thermique | Schéma de principe de la sonde

Traitement et interprétation

Le traitement consiste en :

- 1. Traçage du graphique Température en fonction du logarithme népérien du temps ;
- 2. Détermination de la partie de la courbe correspondant au flux de chaleur cylindrique ;
- 3. Calcul de la conductivité thermique sur la partie de la courbe précédemment déterminée.

Conductivité thermique | Courbe de résultat

Limitation

La principale limitation correspond à la difficulté d'enfoncer la sonde dans les terrains non meubles. Dans ce cas un forage à gros diamètre avec mise en place d'une réservation peut être mis en œuvre.